Computer simulation of spinodal decomposition in constrained films

نویسندگان

  • D. J. Seol
  • J. Shen
  • L. Q. Chen
چکیده

The morphological evolution during spinodal decomposition of a binary alloy thin film elastically constrained by a substrate is studied. Elastic solutions, derived for elastically anisotropic thin films subject to the mixed stress-free and constraint boundary conditions, are employed in a three-dimensional phase-field model. The Cahn–Hilliard diffusion equation for a thin film boundary condition is solved using a semi-implicit Fourier-spectral method. The effect of composition, coherency strain, film thickness and substrate constraint on the microstructure evolution was studied. Numerical simulations show that in the absence of coherency strain and substrate constraint, the morphology of decomposed phases depends on the film thickness and the composition. For a certain range of compositions, phase separation with coherency strain in an elastically anisotropic film shows the behavior of surface-directed spinodal decomposition driven by the elastic energy effect. Similar to bulk systems, the negative elastic anisotropy in the cubic alloy results in the alignment of phases along 1 0 0 elastically soft directions.  2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Spinodal Decomposition

Spinodal decomposition encompasses the ordering dynamics of thermodynamically unstable phases. An example of spinodal decomposition is the separation of the metals in a binary alloy. Because physicists have been unable to develop a fully coherent, consistent , and calculable theory on spinodal decomposition, computational studies have served as valuable sources of information. However, since th...

متن کامل

Pattern formation mechanisms in sphere-forming diblock copolymer thin films

The order-disorder transition of a sphere-forming block copolymer thin film was numerically studied through a Cahn-Hilliard model. Simulations show that the fundamental mechanisms of pattern formation are spinodal decomposition and nucleation and growth. The range of validity of each relaxation process is controlled by the spinodal and order-disorder temperatures. The initial stages of spinodal...

متن کامل

Formation of Poly(vinylidene fluoride) Nanofibers Part II: the elaboration of incompatibility in the electrospinning of its solutions

Poly(vinylidene fluoride) (PVDF) fibers with two molecular weights were prepared via electrospinning process. In this process, the concentration of spinning depended drastically on the gelation process. Also, it was experimentally smaller than obtained concentration in the solution entanglement number approach (SENA). Proof of this incompatibility was explained by the properties of PVDF a...

متن کامل

Spinodal decomposition in pure-gauge QCD

Spinodal decomposition in a model of pure-gauge SU(2) theory that incorporates a deconfinement phase transition is investigated by means of real-time lattice simulations of the fully nonlinear Ginzburg-Landau equation. Results are compared with a Glauber dynamical evolution using Monte Carlo simulations of pure-gauge lattice QCD.

متن کامل

Monte Carlo Simulations for Spinodal Decomposition

This paper addresses the phenomenon of spinodal decomposition for the CahnHilliard equation. Namely, we are interested in why most solutions to the CahnHilliard equation which start near a homogeneous equilibrium u0 in the spinodal interval exhibit phase separation with a characteristic wavelength when exiting a ball of radius R. There are two mathematical explanations for spinodal decompositio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003